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Coherent dynamics in a butane molecule
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We have simulated by molecular dynamics a single molecule of butane in a thermal bath at different
temperatures. We have found that the collective degrees of freedom of the essential dynamics are endowed
with quite different degrees of coherence, and that those subject to the largest fluctuations are also the most
coherent, that is, the least chaotic. We suggest that this pattern may be characteristic also of larger molecules.
A detailed assessment of the degree of coherence has been obtained by computing in the tangent space the
whole set of generalized coherence angles.
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In recent years there has been a growing interest in thi is argued that an apparent cosinelike time evolution of the
dynamics of biological macromolecules, and in the relationfirst few principal components of a protein may be an artifact
between collective motions in a macromolecule and its biodue to a too short time scale of the simulation.
logical function. Myoglobin has been the subjet of particular In order to gain some insight into the dynamical behavior
interest, since experimept] and computer simulatiof2,3]  of the principal components in a wide temperature range, we
pinpointed a dynamical transition around 220 K. This transi-study a butane molecule in a thermal bath. Such a molecule
tion separates a low-temperature region, where a harmonian hardly be labeled as a macromolecule; nevertheless, it
description is appropriate, from a high-temperature regionentails all the relevant degrees of freed@OF9 (stretch-
where the molecule shows a combination of vibration withining, bending, and dihedral torsipthat are found—in a much
substates with transitions between them. In a very recerarger number—in a macromolecule. Because of its small-
paper[4] the dynamics of myoglobin has been studied atness, the convergence of the dynamics can be easily achieved
very low temperature by molecular-dynamics simulation; thewithin an affordable simulation time, and a detailed assess-
authors found a regime of selective energy exchange amongent of the chaotic character of each collective DOF can be
normal modes. Their pattern is very similar to that found in aperformed.
chain of nonlinear oscillators in the famous computer experi- A dynamic system with many DOFs that exhibits a cha-
ment performed by Fermi, Pasta, and UIEBNh and its exis- otic behavior as a whole, may entail DOFs endowed with
tence in a macromolecule was foreseen in a pd@epub-  quite different levels of chaos. We have detected in previous
lished just at the same time p4). works[10,6] such complex behavior in the dynamics of two-

The dynamical regime found in myoglobin hints at the dimensional2D) and three-dimension&BD) Lennard-Jones
existence of ordered collective motions, at least at low temmicrocrystals by performing molecular-dynamics computer
perature. Thus the question arises whether ordered collectivexperiments, and using the coherence anfl¥ss) to mea-
motions exist also at room temperature, and whether they aure the degree of chaos or order of each DOF. The CAs are
relevant for the biological function of myoglobi@nd pos- the average angles between the directions corresponding to
sibly of a class of proteins The best way to answer these each DOF in the tangent space of the phase space of the
guestions would be a principal components analysis of theystem, and the direction characterized by the maximum
dynamics, which has shown the ability to extract from theLyapunov exponent, i.e., the direction with the highest rate
total fluctuation of a macromolecule those components thadf divergence of near trajectori¢40,6]. In the case of the
are relevant to its biological functidr7,8]. At low tempera- 2D and 3D lattices the CAs were computed for a set of
ture the collective modes defined in thassential dynamics collective variablegnormal modek their spectrum revealed
are very similar to normal modes; therefore, an ordered pathat at low temperature significant differences in coherence
tern similar to that found if4] can be expected also in a exist among the normal modes; these differences tended to
principal component analysis performed at the same temdisappear when the temperature of the system was raised and
perature. But the results at room temperature could be quitde total chaos increased. In the present work we show that
different, as the thermal vibrations could destroy the selecdifferent levels of chaos coexist even in the dynamics of a
tive exchange of energy among modes. On the other handjngle simple molecule such as butane in contact with a ther-
even a regular behavior of the first few principal componentsnal bath. The collective variables appropriate to exhibit the
would not be a sufficient proof of an ordered collective be-coexistence behavior in a butane molecule are the principal
havior. Indeed, such a regular behavior has been shown womponents used in the essential dynamics; these extended
exist in high-dimensional random diffusi¢f]. In that paper variables are derived by using the covariance matrix in a

linear transformation of the Cartesian coordinates of the at-

oms[7].
* Author to whom correspondence should be addressed. Electronic We have used a united atoms model to represent the bu-
address: tenenbaum@romal.infn.it tane molecule (¢H,): the hydrogen atoms are incorporated
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in the carbon atoms, giving four equally dressed pointThese forces then have componemis,=D.B1,; F,
massesn [11,12. As the mass of the molecule equals 58 =D,(—B;,+C;,)+D;B,,; Fz,=—D1Cy,+Dy(—By;
a.m.u., each mass point is endowed with a mass o#C,,); F,,=—D,C,,. In order to compute the torsional

energy is the sum of three terms: the vibrational energy of_ - N=b. X — . ;
the covalent bondéstretching, the vibrational energy of the M/M; N=bpxbs, N=N/N; for the dihedral angley we

valence angle¢bending, and the energy associated with the "@ve then cog=—M-N. We define also u=(M
dihedral torsion. The stretching energy is represeft&tiby ~ +Ncosy)/N; v=(N+Mcosy)/M.

a harmonic termV¢= 13k, (b;—bg)?; [bo andb; are, re- The torsional forces on the four atoms are thHep=
spectively, the equilibrium distance and the actual distance- R(b2Xu); Fo=R[(b1+b,)Xu—bsXxv]; F3=R[—b;Xu
between atoms andi+1 (i=1,3)]. The bending energy is + (b2+b3) XV]; Fy=—R(byXV); with

represente@12] by a sum of quadratic terms of the cosine of

. 5
the bending angleg: V,= 3 k,(cosé—cosb,)? 6, and 6, A

are, respectively, the equilibrium angle and the actual angle R= acosy:g‘l jajcod 2

between atomsg i+1, andi+2 (i=1,2). The potential en-

ergy entailed in the dihedral angheis representedl1] as In order to simulate the thermal bath we have used an
VdIEf’:oaj cos'y. V4 has an absolute minimum at=0,  iso-Gaussian thermostat, in which the total kinetic tempera-

V4=0 (gauche conformationand two relative minima sym- ture is kept at a given value at each time sf&p]. This
metrically located aty=*2/3w, V4q=2.926 KJ/mol. This thermostat is more efficient than the Nose’-Hoover one in
energy is equivalent to a temperature of 352 K, and corresampling the phase space of a small molecule like the one at
sponds to the trans conformation. The torsion potential idand[17]. The equations of motion of the molecule in con-

maximum at y=*7/3, where it reaches the valu¥y tact with the thermostat are=p, /m, p,=f;— &(r,p), where

=12.331 KJ/mOl, eQUIVfilent to a temperatute of 1485 Kr:{ri}, p:{pi}, andf is a variable that evolves in such a

[14]. The total force acting on each mass polmas be_en way that the total kinetic enerdg has the required constant

computed byf; = = V;(Vs+V,,+Vg), and the time evolution 5,0 The expression fo& is &(r,p)=2ip;- i /=i |pi|2.

of tThr? system th?S be??hsmul?tgtdf by m?ltehcu:car dyn_amécs. If the system has initially zero total momentum and zero
€ computation of the explicit form of the 10rces in Lar 5, angular momentum, these values remain constant dur-

;gsul’:m co?trd|rlja'1[res_|s qune_cumberf)orr:ﬁ; we r_te_port fhtehre ﬂ]ﬁg the time evolution. The equations of motion of the mass
finaj results. e i—{ri,a,a.—x,y,z} € the position OT € h5ints have been integrated with a modified leapfrog algo-
ith atom, ando;=r;, —r; (i=1,2,3). We define : ; : o
' i—hiFr e rithm. It starts with the computation of interim momenta of
the point masses at tinte
ri+1,a_ ri,a
A= Ka(bi— bo)=—F—= A

- f(t)h
p(t):p(t— >

+—.
2

The forces acting on the four atoms derived from the stretch-
ing potential Vg then have components,,=A;,; F,=
—A, A, Faa=—As,tAs,; Fa,=—Asz,. For the
forces deriving from the bending potenti}, we write

The momenta at timé+h/2 can then be computed p(t
+h/2)=2p(t)\ —p(t—h/2), wherex =(K/K)*? and Km
=3,p?(t). We have used a time stdp=1.06 fs, which is
bi-bj 1 1/20 of the periodl of the fastest vibration in the system,
cos; = — bibi s the stretchingT,=2.12x10 2 ps. The precision of the al-
o gorithm is of O(h%) in the positions and in the velocities,
and define and in a simulation at constant energy it would allow an
energy conservation within 0.01%; moreover, it has the ad-
d COS; vantage of being symplectid5]. The duration of the runs
Bio= ar; lasted between 10 and 20 ns. An initial interval of 0.1 ns was
“ discarded in the statistics to avoid the influence of the initial
Mi2a—Titr1a litia—lia conditions. The initial total momentum was set equal to zero.
—coso, b; } The temperatures simulated ranged from 140 K to 1080 K; in
this range the dihedral angle can undergo transitions between
the gauche and trans conformations.
We analyzed the dynamics of the butane molecule
Mit1a through the set of collective variables defined by means of

1

b;

bit1

. d cosb;
Cia=

1 [Fisq0—Ti, Fivoa—Tit1a the linear transformation of the vectar into q=07(r
b #—cosei bT , —(r)), whereO is the matrix of the columns which are the
i1 : ! eigenvectors of the covariance matri€=((r—{r))(r
N —(r))™; (-) is a time averaged 'CO is a diagonal matrix,
=— b__ —ky(cOSH; — COSOp). the elements of which are the eigenvalues corresponding to
d Cosb; those eigenvectors. The time evolution of veajodisplays
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the essential dynamics of the molecule: it has been shown ir [
the simulation of proteins that the componentsgofilong \
few eigenvectors, corresponding to the largest eigenvalues o
C, account for most of the total fluctuatigi@,8]. The same NN
matrix O can be used to compute the velocities associatec \3\
with ¢, through the transformatjon of={r;} into q=0Tr. 2t \?\\\ s T1%0K

We resume briefly the analytical tools used to measure the Yy o --0 T=720K

\ *—*»T=1080 K

degree of chao®r orde) of the DOFs of the system; a more é
general and detailed description of the theoretical framework
can be found ir{10,6]. Let x(t)={q(t),#(t)} be the repre-
sentative point of the system in phase sp&€l, where = 1t
=mq andN is the number of mass points in the system. Let
x1(0) andx,(0) be two nearby points ifk®N; the vector
w(0)=x,(0)—x,(0) is a vector of the tangent spagé&®N

of R®N, If the time evolution ofx is generated by the set
of differential  equations x=f(x), then w(t)
=E?§1af,/(9x]-wj(t), and a set of Bl coherence angleg, ‘
can be defined through

FIG. 1. Eigenvalues of the covariance mat@xn units of A2,
1ft|w(l)(tf)|2 i is the index of the eigenvalues that are ordered in decreasing
!

coSa,=lim T , magnitude.

ot Jo Jw(t!)|?
spondence is even more evident, as the first three essential
DOFs correspond to eigenvalues that are much higher than
the following ones; at the same time, these DOFs are more
coherent than the system, while the remaining ones are more
8haotic. The last three DOFs, corresponding to the constraint
of the center of mass, have CAs equal to 90°; their value is
constant in time, which can be construed to be a perfectly
coherent dynamics. In Fig. 3 we report the generalized CAs
ay at T=1080 K; the data are reported for the six expand-
ing directions in TR®N associated with the six largest
Isyapunov exponents. For each DOF, the coherence angles
Abetween the DOF and the directions corresponding to
Lyapunov exponents smaller than vary smoothly with a
decreasing value of the Lyapunov exponent. The pattern at

wherew()(t) is the projection ofw(t) on the planeT§ of
TRON that is spanned by the variations gyf(t) and m(t);
hereinafter we call DOFs the plang@s . «; is an effective
angle betweel S and the direction oT R8N associated with
the highest divergence rate of near trajectories, i.e., with th
maximum Lyapunov exponent;. In a similar way, one can
define and compute generalized CAs,, that measure an
effective angle between the direction ®R°N associated
with the kth Lyapunov exponent and the subspac® [6].
High (low) CAs characterize DOFs that are |éssore) cha-
otic than the system as a whole. The set of generalized C
measure the effective angles between eaghand the di-
rections of TR®N that induce a more chaotibigh Lyapunov
exponent or a more ordered behavi¢iow Lyapunov expo-
nend. In [6] it was conjectured that the spectrum of,

should vary smoothly withk: that is, thatay=«, for low 9 [
values ofk, corresponding to the most chaotic directions. We
will show in the present work that this is indeed the case. | +—+ T=140K
In Fig. 1 we report the eigenvalues of matfixat three MRt ]

temperatures; the last three eigenvalues are zero, as they cc
respond to the exact constraint that does not allow the cente 8o
of mass of the molecule to move. At=140 K the first four
eigenvalues are higher than all following ones; even thoughg
the values from the third one on do not differ greatly, it can ©
be stated that the projection of the motion on the first four
eigenvectors oC entails the largest portion of the total dis- 79
placement. At higher temperatureT£720 K and T
=1080 K) the distinction between the first three essential
DOFs and the following ones becomes quite evident. How
does this pattern reflect itself in the amount of coherence ol
these DOFs? In Fig. 2 we report the CAs of all 12 DOFs, g L
computed for the collective variableg and 7, . This figure
shows that there is a clear correspondence between the first
few essential DOFs and the most coherent ones.TAt FIG. 2. Coherence anglag of the collective DOFs q;, q);
=140 K the first four DOFs are more ordered than the sysunits are degrees. The straight line corresponds to the average angle
tem as a whole. AT=720 K andT=1080 K this corre- «a=73.2°.
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81 — ' ' ' ' ' The total coherence of a DOF depends on its angular dis-
tance inTR®N from all characteristic Lyapunov directions
(whether expanding or contractinghat is, on the general-
ized CAs. But in practice the level of chaos of a DOF is
determined mainly by its orientation with respect to the most
7 rapidly expanding directions. The results of Fig. 3 show that
the average angle between a DOF and the most expanding
direction(characterized by ) is very similar to the average
angle the same DOF makes with the directions that are just
slightly less expanding, and very different in value from the
] average angle that the same DOF makes with the least ex-
panding ones. Therefore, the single= « is already a con-
venient measure of the coherence of ktieDOF. The CAs,
which are easily measured and interpreted in a computer ex-
periment, summarize the information relevant to determine

6 — 2 : ' : : the coherence of the DOFs, as given in more detail by the

Lyapunov directions (k) generalized CAs.
We have shown that in a butane molecule the collective

FIG. 3. Generalized coherence angles between the noncorspordinates endowed with the largest fluctuations are also
strained DOFs|(=1,9) and the six directions in the tangent space characterized by a higher coherence in their dynamics. Even
characterized by positive Lyapunov exponeRis Units are de- 4,91 the butane molecule is small, it entails all internal
grees.oThe straight line corresponds to the average angle DOFs—stretching of valence bonds, bending of valence
=73.2°.T=1080 K. angles, torsion of dihedral angles—that are found in much
] ] larger biomolecules. We speculate that in those large mol-
the two lower simulated temperaturéit0 K and 720 Kis  gcyles one would find results similar to the pattern presented
very similar: at 140 K(720 K) the curves corresponding t0 nhere, that is, that the principal components found in a cova-

the first four(threg DOFs are above the average angle up torjance analysis are less chaotic than the molecule as a whole.
the fifth generalized CA, while the reverse is true for the

curves corresponding to the following DOFs. This pattern We are indebted to Professor H. Posch for advising us on
was advanced as a conjecture[@], and is confirmed here. the choice of the model for the butane molecule.
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